Revisiting Conditional Rényi Entropies and Generalizing Shannon’s Bounds in Information Theoretically Secure Encryption
نویسندگان
چکیده
Information theoretic cryptography is discussed based on conditional Rényi entropies. Our discussion focuses not only on cryptography but also on the definitions of conditional Rényi entropies and the related information theoretic inequalities. First, we revisit conditional Rényi entropies, and clarify what kind of properties are required and actually satisfied. Then, we propose security criteria based on Rényi entropies, which suggests us deep relations between (conditional) Rényi entropies and error probabilities by using several guessing strategies. Based on these results, unified proof of impossibility, namely, the lower bounds of key sizes is derived based on conditional Rényi entropies. Our model and lower bounds include the Shannon’s perfect secrecy, and the min-entropy based encryption presented by Dodis, and Alimomeni and Safavi-Naini. Finally, a new optimal symmetric key encryption is proposed which achieve our lower bounds.
منابع مشابه
Information Theoretic Security for Encryption Based on Conditional Rényi Entropies
In this paper, information theoretic cryptography is discussed based on conditional Rényi entropies. Our discussion focuses not only on cryptography but also on the definitions of conditional Rényi entropies and the related information theoretic inequalities. First, we revisit conditional Rényi entropies, and clarify what kind of properties are required and actually satisfied. Then, we propose ...
متن کاملThe Mathematical Theory of Information , and Applications ( Version 2 . 0 )
These lecture notes introduce some basic concepts from Shannon’s information theory, such as (conditional) Shannon entropy, mutual information, and Rényi entropy, as well as a number of basic results involving these notions. Subsequently, well-known bounds on perfectly secure encryption, source coding (i.e. data compression), and reliable communication over unreliable channels are discussed. We...
متن کاملA duality relation connecting different quantum generalizations of the conditional Rényi entropy
Recently a new quantum generalization of the Rényi divergence and the corresponding conditional Rényi entropies was proposed. Here we report on a surprising relation between conditional Rényi entropies based on this new generalization and conditional Rényi entropies based on the quantum relative Rényi entropy that was used in previous literature. This generalizes the well-known duality relation...
متن کاملSome New Properties for Degree-Based Graph Entropies
The graph entropies inspired by Shannon’s entropy concept become the information-theoretic quantities for measuring the structural information of graphs and complex networks. In this paper, we continue studying some new properties of the graph entropies based on information functionals involving vertex degrees. We prove the monotonicity of the graph entropies with respect to the power exponent....
متن کاملArtemia: a family of provably secure authenticated encryption schemes
Authenticated encryption schemes establish both privacy and authenticity. This paper specifies a family of the dedicated authenticated encryption schemes, Artemia. It is an online nonce-based authenticated encryption scheme which supports the associated data. Artemia uses the permutation based mode, JHAE, that is provably secure in the ideal permutation model. The scheme does not require the in...
متن کامل